일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 일상
- 에너지 역학
- X선의 발견
- 라만 분석
- 흡광
- von laue
- 고체물리학
- 륀트겐
- 바일 페르미온
- 웨일 페르미온??
- 라만 분석기
- 연속스펙트럼
- 특성스펙트럼
- 그루데 이론
- 결정구조학
- 전자의 속도
- 화합물 반도체
- X선 기초
- 에디슨의 패배
- 3 o'clock things
- 바일 준금속
- laue
- Raman
- X선 공학
- 라만 현상
- 전기장이 가해진
- X선
- 재료과학
- 빛의 손실
- drude
- Today
- Total
목록물리학/양자역학 (3)
공머생의 공부노트
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/b4z4Fd/btsMlmnSAmX/KtmSpY1LFweYVWukeAfkKK/img.jpg)
양자역학의 시작은 우리가 배우는 물리와 상이하게 다르다. 여기서 "다르다"라는 것은 이를 배우지 않은 사람은 이해하기 조차 어려울 정도로 근본적인 차이가 있다. (내가 느끼기에는) 여러 영상이나 책에서 양자역학을 간단하게 설명하려고 많은 노력을 하지만 거의 겉핥기에 불과하고 그 속에는 몇마디 말로 간단히 표현할 수 없는 무언가가 숨어있다. 세상에서 가장 유명한 물리학자중 한명인 리처드 파인만은 양자역학을 수업할 때 “양자역학이 무엇인지 이해했다고 말하는 사람이 있다면, 그것은 새빨간 거짓말이다” 라고 표현했을 정도이다. 그리고 실제로 이 말은 맞는 말 같다. 주의 : 학부 3학년 수업을 기반으로 독학하고 풀이한 내용을 기반으로 하기에 오류가 있을 수 있습니다. 엄밀한 증명과 수식적인 부분에서 ..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/HBhHV/btrWR7ivMzd/A2J4O1nGLreWXzI66Egnv1/img.png)
슈레딩거 방정식은 입자의 움직임을 파동 함수의 형태로 기술하고, 특정한 퍼텐셜이 가해짐에 따라 해당 입자의 파동함수를 내놓는다. 즉 고전적인 물리 상황에서도 물질의 파동성이 매우 작다는 것을 간주하면 그대로 적용이 가능하다는 의미다. 그렇다면 파동함수로 얻어낸 그 입자의 상태는 진짜 현실의 입자를 설명할 수 있을까?? 이를 위해 슈레딩거 방정식을 적용하고 고전적인 해석과 비교해볼 수 있는 이미 해석되고 증명된 예제들이 있다. 그 중에서 무한한 포텐셜 상황을 가정하는 무한한 사각형 우물을 해석해보겠다. 1. x가 0
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/lgZmG/btrWSxaoWCD/vKviF99JHp90iPJ9V3Kqj1/img.png)
일반적으로 제시되는 schrodinger방정식은 특정한 퍼텐셜 V(x,t)에 대하여 아래의 방정식을 성립한다. 결국 슈레딩거 방정식은 2차 편미분 방정식을 해석해야 하므로 ψ(x,t) = ?? 인가에 대한 고민에 중점이 맞춰져 있다. 이때 ψ는 x와 t에 대한 식으로서 공간과 시간에 대한 고려를 동시에 포함해야 한다. 다만 우리가 관심있는 일반적인 상태에서는 t 가 식에 영향을 끼치지 못하는 즉, 정상상태(steady state)에서의 ψ에 대해 고민할 필요가 있다. Ψ를 변수분리 하여 전개하게 되면 ψ는 x만의 함수로 정의하고 φ는 t만의 함수로 정의 가능하다. 이때 식에 이를 적용하여 바로 풀이하면 위에 식에 ψ = ψ* φ를 적용하면 또한 전체 식에 ψ*φ를 나누면 위 식으로 전개되는데 식의 좌변은..